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Abstract. Source code plagiarism can be identified by analyzing several
and diverse views of a pair of source code. In this paper we present
three representations from lexical and structural views of a given source
code. We attempt to show that different representations provide diverse
information that can be useful to identify plagiarism. In particular, we
present representations based on 3-grams of characters, data type of
function’s signatures and names of the identifiers of function’s signatures.
While we used only three representations, more representations can be
added. We conducted our analysis over a collection of 79 source code
written in C language. Our results show that n-gram representation is
very informative, but also that representations taken from the function’s
signatures are, to some extend, complementaries.
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1 Introduction

Plagiarism detection in source code is a topic of growing interest of many re-
searches since 1980; specifically when institutions such as the Carnegie-Mellon
University created policies for their computer science departments [1] to prevent
plagiarism among their students. Recent studies [2,3] have shown that there has
been an increment in the number of students that plagiarize source codes. For
example, in 1995, according to Rosales et al. [2], less than 2% of the students’
code passed through the software pk2 where found guilty of plagiarism, while in
2006 this percentage grows to an almost 10%.

This problem has became an important topic such that researchers started
to define the problem more formally. For instance, in 1987 Faidhi and Robinson
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[4] proposed a seven level hierarchy that aimed at representing most of the
program’s modifications used by students when they plagiarize code. As a con-
sequence, many approaches try to identify code plagiarized based on these levels
of complexity, that include: no changes at all (level 0), modification in comments,
identifiers, variable position, procedures combination, program statements and
logical control, from level 1 to 6 respectively.

In addition, over the past years, several methods have been dealing with
detecting source code reuse focusing on two main aspects: structural and super-
ficial1. However, in order to detect modifications on structural aspects, a deeper
and strict analysis is required and it is often imply to have a complete knowledge
of some particular programming language.

It is important to mention that similar to plagiarism over text documents,
plagiarist of source code also apply several techniques in order to obfuscate
or camouflage the plagiarized sections. Accordingly, it is very difficult to focus
on all the possible types of obfuscation and incorporate them into a single
method. Nevertheless, as in text documents (written in natural language), source
code has structure and meaning, and also has inherently (to some extend) the
particularities of the original author’s written style. In the knowledge of these
similarities between text documents and programming languages, we propose
the use of natural language processing techniques to present a methodology that
incorporate several views (representations) of the source code, which aim at
providing more elements to accurately identify source code reuse. Specifically,
this paper proposes and analyzes different representations of a source code,
namely: n-grams of characters, data types, and identifiers’ names. Our intuitive
idea indicates that by means of considering different aspects from a source code
(including those evaluated here), it will be possible to capture some of the
most common practices performed by the plagiarist when they are camouflaging
plagiarized sections.

The rest of this paper is organize as follows. In Section 2 we report related
methods and its way to tackle the problem. Then, we present our proposed
representations in Section 3. Section 4 shows the experimental settings to test
our methodology; also, in this section we present the results obtained over a set
of source codes written in the programing language C. Finally, in Section 5, we
depict some conclusions and future work lines.

2 Related Work

The plagiarism detection problem has been tackled through several approaches,
mainly NLP techniques adapted to the specific content of source code. One
such works, take into account a trace that remains after a copy of source code:
whitespace patterns [5]. In this work the file is converted to a pattern, namely
‘whitespace’ format: replacing any visible character by X, any whitespace by
S, and leaving newlines as they appear. The method calculates a similarity

1 From the more external and internal levels of the hierarchy proposed by [4],
respectively
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index based on the longest common substring (LCS) of both patterns, LCS:
LCS/ max{l1, l2}, where li is the size of pattern i. To perform their tests,
authors used C source code from free software Apache and Linux Kernel. Us-
ing the distribution of similarity index for source code pairs, corroborate their
hypothesis: pairs of similar code (different Kernel Linux version) have mean
and standard deviation high, and pairs of different source code have mean and
standard deviation low. However, there is not significative difference for similar
and different source code.

Another very common approach is to determine the fingerprint, as the Moss
tool, based on n-grams of words from the source code [6]. It is important to
consider several features of source code, such as identifiers, number of lines,
number of terms per line, number of hapax, etc. In [7] authors carried out an
experiment composing a similarity measure which uses a particular weighting
scheme aiming to combine the extracted features.

G. Cosma and M. Joy [8] performed a detailed analysis supported on LSA.
They focused their work on three components: preprocessing (keeping or remov-
ing comments, keywords or program skeleton), weighting (combining diverse
local or global weights) and the dimensionality of LSA. The experiments were
based on information retrieval: given a query as a source code aimed to obtain the
most similar source codes. Furthermore, they build four corpora; using for this
purpose the tools Moss and Sherlock [9], and human judgements to clean results
given by the tools. In order to achieve a good trade-off between components, they
used the best preprocessing (remove comments) then, measured the performance
based on MAP to select the best weighting (local frequency, normal global
frequency, and normalization of document). Observing curves of MAP over
dimensionality were determined 15 dimensions. Besides, they tuned the threshold
analyzing the lowest positive matching, highest false matching, and separation
(difference between lpm and hfm). Finally, the dimensionality was 30 for such
corpora.

Notice that a common aspect among the previous works is that authors try to
capture several aspects from source codes into one single/mixed representation
(i.e., a single view) in order to detect plagiarism. However, our hypothesis
indicates that each aspect (i.e., either structural or superficial elements) provides
its own important information that can not be mixed with other aspect when
representing source codes. Accordingly, we perform an analysis of two main
aspects that we consider among the most discriminative for detecting source
code reuse.

3 Proposed Source Code Representations

In this section we describe in detail our proposed representations. These repre-
sentations are divided into two views (i.e., lexical and structural). The goal is to
to determine if it is possible to identify pairs of source code with high similarities,
thus providing evidence of plagiarism.
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The first view considers the lexical characteristics of the source code and
tries to capture some superficial modifications. The second view considers some
structural characteristics, i.e. signature’s programming function from source
codes, and it is subdivided into two types: i) similarities between data type
of function’s signatures, and ii) similarities between identifiers of function’s
signatures.

3.1 Lexical view: character 3-grams representation

The approach used in this representation was proposed by Flores Sáez [10].
The main idea was to represent a given source code into a bag of n-grams of
characters, Bj , where all the blanks and line-breaks are deleted and the letters
are changed into lowercase.

Comparison of two codes Given two codes, Cα and Cβ , their bag of 3-grams
is computed as we mentioned before; then, each code is represented as a vector
Bα and Bβ according to the vector space model proposed by [11]. Finally, the
similarity between a pair of source codes is computed using the cosine similarity,
which is defined as follows:

simlexical(Cα, Cβ) = cos(θ) =
Bα · Bβ

‖Bα‖‖Bβ‖
(1)

3.2 Structural view: data types from the function’s signature

representation

As we mentioned before, the proposed structural view consists of two repre-
sentations. The first representation considers the data types of the function’s
signatures2. The idea behind this representation is based on the intuition that
plagiarists often are willing to change function’s and argument’s names, but
not the data types of such elements. Thus, by means of using the data types
of function’s signatures we attempt to compare some elements that belong, to
some extent, to the structure of the program.

Accordingly, first we represent each function’s signature into a list of data
types. For example, the following function’s signature ‘int sum(int numX, int

numY)’ will be translated into ‘int (int, int)’.
In order to represent each source code, we need a vocabulary formed by

all used data types within the source codes in revision, which is called the
data-type vocabulary. Then, we form the respective vector for each function.
For instance, consider that our vocabulary is formed by the elements ‘<char,

double, float, int>’, then, the representation of a function with the following
signature ‘int sum(int x, int y)’ will be (0,0,0,2)’. Notice that we are not
considering the return type at this step.

2 We will refer just as function to every programming function within a source code.
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Below it is defined how two functions are compared. Later, we define a
similarity equation that takes into account all the functions in a pair of source
code.

Comparison of two functions. To calculate the similarity between two func-
tions, we need to compare two parts of the function’s signature: return data
type and arguments data types. We measured the importance of each part
independently and then we merge them.

Given two functions, mα and mβ from Cα and Cβ respectively; and the return
data type of those functions (i.e., mα

r and mβ
r ), we can compute their similarity

as Equation 2 states.

simr(m
α
r , mβ

r ) =

{

1 if mα
r = mβ

r

0 otherwise
(2)

For the same two functions, mα and mβ , the data types of their arguments are

represented as vectors mα = [amα

1
, amα

2
, ..., amα

k ] and mβ = [amβ

1
, amβ

2
, ..., amβ

k ].
Where each positions in the vector represents a data type from the vocabulary
of data-type, and the value for each element is the frequency of that type in
the function’s signature. Hence, the similarity of the arguments’ data types is
calculated as defined in Equation 3.

sima(mα,mβ) =

∑k

i=0
min(amα

i , amβ

i )
∑n

i=0
max(amα

i , amβ

i )
(3)

Once we have the similarities from the return data-type and the arguments’
data-type we merge them into a linear combination to find the similarity between
mα and mβ; as in Equation 4.

sim(mα, mβ) = σ ∗ simr(m
α
r , mβ

r ) + (1 − σ) ∗ sima(m
α,mβ) (4)

where σ is a scalar that weights the importance of each term and it satisfies
that 0 ≤ σ ≤ 1. For our performed experiments, presented in a following section,
we established σ = 0.5 so both parts are considered equally important.

So far, we have described how to compute the similarities among functions
considering both, their data types as well as their arguments names. Next, we
describe how we measure the final similarity of two source codes considering all
previous computed information.

Comparison of two codes Given two codes, Cα and Cβ , we compute a
function-similarity matrix M

type
α,β , where all functions in Cα are compare against

all functions in Cβ . Thus, the final values of similarity between two codes are
defined as in Equation 5.

simDataTypes(Cα, Cβ) = f(Mtype
α,β ) (5)
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where f(x) represents either the maximum value contained in the matrix,
or the average value among all values from the matrix. Therefore, if we select
the maximum value it implies that we are being more strict for determining
when a pair of source codes are in fact plagiarized; and if we select an average
value it indicates that we are being less strict, in other words, less rigorous for
determining when two source codes are plagiarized. For example, if it does not
matter how many functions are present in both source codes, and if just the
occurrence of one exact match (i.e., an equal function) is enough for labeling
two source codes as plagiarized, then we must employ the maximum value from
the function-similarity matrix. However, in a more relaxed criterion, we can use
the average similarity among functions and use this value as the final similarity
value between a pair of source codes.

3.3 Structural view: names from the function’s signatures

representation

As a complement for the previous representation, this one considers the structure
by using the names of the functions as well as the name of the arguments. Our
intuition is that some plagiarists might try to obfuscate the copied elements by
means of changing data types, but not the variable’s names.

This representation concatenate the name of the function’s name with the
name of the arguments. First, we convert every character to its lowercase form
and we remove white spaces (if present). Thus, the function ‘int sum(int x,

int y)’ will be represented as ‘sumxy’. After that, we extracted all the 3-grams
of characters and form a bag of 3-grams.

Once we have computed the bag of n-grams, we can compute how similar
are a pair of functions. Next, we explain how we compare two functions, and
then we define how several functions extracted from a pair of source codes are
compare in order to determine the similarity between them.

Comparison of two functions Given two functions, mα and mβ from Cα

and Cβ respectively; and their corresponding bag of 3-grams bmα

and bmβ

, we
compute the similarity of this two functions using the Jaccard coefficient as
follows:

sim(mα, mβ) =
bmα

∩ bmβ

bmα ∪ bmβ
(6)

Comparison of two codes Similarly to the previous approach, every function
in Cα is compared against every function in Cβ . From this comparison we obtain
a name-similarity matrix Mnames

α,β . Hence, the final similarity values of Cα and
Cβ is defined as established in Equation 7.

simNames(Cα, Cβ) = f(Mnames
α,β ) (7)
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where f(x) can be set to the maximum value in the matrix, or the average
value from the matrix. The meaning of such selection indicates the level of
strength in the criteria to determine plagiarism between two source codes.

4 Experimental Results

The experiments performed aim at analyzing the pertinence of each of the
proposed representations when determining the similarity between a pair of
source codes. As we mentioned in previous sections, three representations were
proposed: i) a lexical view, described in Section 3.1; and ii) a structural view that
is composed by two other representations, namely the data-type representation
(section 3.2) and the function and arguments’ names (section 3.3).

In order to conduct an analysis of the proposed representations we evaluated
our proposed approaches using a subset from the training collection of the
competition of Detection of Source Code Re-use (SoCO 2014)3. This subset
consists of 79 source codes in C language, where 26 pairs were tagged as cases
of plagiarism by human experts. It is worth to mention that the relevance
judgments do not indicate the direction of the plagiarism , i.e., they do not
indicate which source code is the original and which is the copy, hence, we do
not detect such phenomena.

For each representation we compute the similarities values of each source code
files given in the collection. Then, we measure the performance of each proposed
representation by means of establishing a manual threshold for considering when
two codes are plagiarized (re-used). That threshold was set from 10 to 90 percent
of similarity. For each threshold we evaluated the precision, recall and F-measure
(based on the relevance judgments). Notice that, at this stage of our investigation
we still not identify cases of source code re-use, rather we want to analyze the
pertinence of each of the proposed representations for finding similarities within
a pair of codes.

4.1 Experiment 1. Lexical view

For this experiment, we use the implementation done by Picazo et al.[12] of the
method proposed by Flores [10] (See section 3.1). The results are presented in
Figure 1, where we can see values of precision, recall and f-measure for different
threshold’s similarities values.

As we can see in the figure, it is clear that when the threshold is very
relaxed, the recall (i.e. the number of source code pairs that under the lexical
representation are labelled as plagiarize and they actually are) is very good.
On the contrary, the precision is very poor since the method identify too many
pairs of source code as similar. The opposite situation is presented when we are
very strict in the decision of how much similar two codes must be to labeled
as plagiarize. However, we found that a good compromise is reached at 80% of
similarity, when the f-measure is 0.56.

3 http://users.dsic.upv.es/grupos/nle/soco/
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Fig. 1. Lexical view. Best result is obtained with the 80% of similarity between two
methods

4.2 Experiment 2. Structural view

In this experiment we evaluated the two approaches: Comparison of Function
Signature’s Data Types and Comparison of Function Signature’s Names.

In both cases, from Equations 5 y 7, we implemented function f(x) as the
maximum values of similarity among all the compared functions, and the average
of similarities of the methods contained in the files of source codes. With this
decision we attempt to compare the performance of this two polices. In this
implementation we considered all the functions within the source code except
for the main() function. The results for the Comparison of Function Signature’s
Data Types approach are presented in Figure 2 and Figure 3.

From the graphs in Figures 2 and 3, we can notice the considerable low
performance obtained in comparison with the values obtained with the lexical
view. However, this decrement in f-measure is also understandable, since the
information from where we computed the similarities is a small part of the whole
file of source code, that is function’s signature only. Another important remark
is that, as we expected, the more strict we are in the policy to determine a pair of
source code as plagiarized the similarity among this pair has to be greater (as in
the case of using the maximum similarity from the matrix of method similarities
computed). The best results are obtained when the similarity is 90% (0.14 of
f-measure) when considering the maximum, and 50% (0.16 of f-measure) when
considering the average.

An important different between the results are the behavior of precision-
recall values. When using the average we can see a expected precision-recall
relation (i.e., precision improving while recall decreasing) and we can get a good
compromise to find the best configuration. We can not see this pattern when
using the maximum.

Regarding to the second approach, Comparison of Function Signature’s Names,
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Fig. 2. Structural view: data type of function’s signatures using the maximum value of
similarities between functions. Best result is obtained with more than 90% of similarity
between two methods
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Data types from the signature (average)
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Recall
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Fig. 3. Structural view: data type of function’s signatures using the average value of
similarities between functions. Best result is obtained with 50% of similarity between
two methods

the graphs in Figure 4 and Figure 5 show that the best F-measure, i.e., 0.26
and 0.22 was obtained when the similarity between codes was 40% and 20%,
respectively.

Notice that even when the F-measure is poor for both representation in
the structural view, they gives complementary information. While the recall is
significant better when the data-type are considered, the precision is much better
when the names of the function’s signature are taking into account.

Another important remark is that given the results obtained with the lexical
view and the fact that this representation uses more information, it might serve
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Fig. 4. Structural view: identifiers of function’s signatures using the maximum value of
similarities between functions. Best result is obtained with 40% of similarity between
two methods

as the base approach to consider (or the most important similarity) to identify
source code reuse.

More experiments must be done to analyze a good combination of this
similarities to build a general method that identify source code plagiarism. Also,
this methodology can be extended no only to C language, but to any other
language, since our proposed views do not depend of any particularity of a
programming language.

5 Conclusions and Future Work

We presented several representations for source code that highlight different
views of a source code. In particular, we presented two views: lexical and struc-
tural. From the lexical view, we used an implementation of the Flores’s method.
For the structural view, we proposed two similarities that takes into account
function’s signatures within the source code. The conducted experiments help us
to see that the information from this different approaches can be complementary.
Also, we see that the lexical view gives the best similarity since uses the entire
source code file. The proposed method can be extended to other views as well
to other programming languages.

The future immediate work is to combine different views to determine if
a pair of source code is or not been plagiarize. The first idea is learn the most
important view, this can be done by looking at the view with the best F-measure.
Another idea is to learn this weight in an automatic fashion, using a learning
algorithm.

The experiment were performed with a collection of 79 source code in C
programing language, but we believe that we can translate the views to another
languages, for example Java, without any adjustments to the presented views.
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Fig. 5. Structural view: identifiers of function’s signatures using the average value of
similarities between functions. Best result is obtained with more than 20% of similarity
between two methods
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